

Ember
A General Purpose Scripting Language for

Stand-Alone, Web Base, and Embedded Applications

	

	
	
Users Guide and Reference
	
	
Version 2.0

Feb		2017	

	

	

	

	

Although best efforts have been made to ensure the completeness and accuracy of the material presented in this document,
Hughes Technologies Pty Ltd does not warrant the correctness of the information provided herein.

This software product is distributed under a dual-license scheme that provides the user with a choice of licenses. This
software may be used either under the terms of the GNU Public License v3.0 (GPL), or the Ember Commercial License. The
GPL v3.0 is available from the GNU Project’s web site at http://www.gnu.org. The Ember Commercial License is available
from the Hughes Technologies web site at http://www.Hughes.com.au.

Copyright © 2001 – 2017 Hughes Technologies Pty Ltd. All rights reserved.

This document was designed to be printed on a duplex (double sided) device.

Preface
Intended Audience

This document has been prepared as a manual for the Ember programming language and it’s associated libraries
and modules. It is not designed as an introductory tutorial for procedural programming languages. The syntax
and semantics of the Ember language are similar to those of the C language. A working knowledge of C will aid
the reader in understanding the Ember language.

Integration of Ember and the World Wide Web is covered in the w3e section. It is assumed that the reader is
familiar with the WWW, HTML, CGI scripts and the operation of a web server (http daemon).

	

Document Conventions
This manual has been designed to be printed on US Letter paper. While many parts of the world utilise the A4
paper size (Australia included), it is not possible to print A4 formatted documents on US Letter paper without
loss of information. However, printing of US Letter formatted documents on A4 will result in a correct
representation of the document with somewhat larger margins than normal.

Throughout this manual, parts of the text have been flagged with the symbol that appears in the margin opposite
this paragraph. Such pieces of text are viewed as being important. The reader should ensure that paragraphs
marked as important are read even if the entire manual section is only being skimmed. Important sections will
include information such as tips on improving the performance of your applications, or areas where mistakes are
commonly made.

	

Contact Information
Further information about Ember and its related software can be found on the Hughes Technologies Web site.
The web site includes the latest version of Ember, documentation, support, example software, references to
customer sites, and much more. Our web site can be found at

http://www.Hughes.com.au

This page left intentionally blank

Table of Contents
Introduction ... 1

Basics ... 1
Scalar Types .. 2
Array and Assoc Types .. 2
Mathematical Expressions ... 3
Conditions and Loops ... 4
User Defined Functions .. 4
User Defined Libraries .. 5
Dynamic Loading Modules ... 6

Ember’s Standard Module .. 7
Input Output Routines ... 7
String Manipulation Routines .. 10
System Services Routines .. 14
Date / Time Related Routines .. 20
Password file Related Routines .. 22
Network Related Routines .. 23
HTML / WWW Related Routines .. 24
Misc Routines ... 26

Embedding Ember in HTML Pages .. 27
Scripting Tag .. 27
Form Data .. 28
Security Related Features .. 28
Access Control and Runtime Configuration .. 29

Embedding Ember in Applications .. 30
Overview .. 30
API Reference .. 31
Example ... 34

Differences between Ember and Lite .. 35

Page 1

Introduction
Application developers are often faced with problems that are best solved using a scripting language. It may be a
stand-alone application that can be rapidly implemented or prototyped in a scripting language such as Perl. It
may be a web delivered application implemented using a scripts embedded within HTML such as PHP. It may
be a need for macro facilities within an application, provided by an embedded scripting language such as VB
Script. To the detriment of both the programmer and the application’s user, a different scripting language must
be used in each situation.

Ember provides a solution to all the problems outlined above. It is a lightweight procedural scripting language
that was designed for use in embedded applications. The first two applications developed with embedded Ember
were a front-end for running stand-alone Ember scripts, and a front-end for embedding Ember code within a web
page. Both of those applications are provided within the software distribution.

Because the scripting language itself is identical whether it is being used stand-alone, within a web page, or
within another application, most of this manual documents how to write scripts using the Ember language. Later
in this manual, details of how to embed Ember in an application and how to extend Ember using a dynamic plug-
in (an Ember module) is presented.

Basics
Ember has been designed to mimic the syntax and semantics of the C language while reducing some of the
complexities and error prone features of C. This is intentional as most programmers working on UNIX
machines have a working knowledge of C but look for a more "easy to use" language for scripting. The main
changes from C are

• All memory management (i.e. allocation and deallocation of memory for variables) is taken

care of by the Ember Virtual Machine. Your script does not need to perform any memory
management operations.

• A variable has no fixed type. It will contain whatever is stored in it (e.g text value, numeric
value). When you perform an operation on a variable, such as maths or comparisons, the
contents of the variable are checked to ensure they are of the correct type. This concept will
become clearer as we progress through this documentation.

• There is a dynamic array type. Each element of the array is a variable as described above.
The elements are accessed as they are in C, i.e. variable[offset], but they need not be
declared before use. That is, the array element is created when a value is stored in it without
a pre-definition of the array.

• An associative array type is available to the programmer. As with other associative array
implementations, the array index is actually a textual key value, and is specified between {}
characters rather than the [] characters used to enclose a normal array index.

• Variables are not pre-declared. They are created when they are first used.
• Variable names must start with either a $ or @ character. The $ character signifies a local

variable (within the scope of the current function) while the @ character forces a reference
to a global variable.

Page 2

Scalar Types
Variables are constructed from a $ sign followed by alpha-numeric characters and the '_' character. The only
restriction placed upon the name of a variable is that the first character of a user defined variable must not be an
upper case character. There is no need to pre-declare variables as you do in a language such as C. A variable is
created the first time you assign a value to it. Similarly, the type of the variable is defined by the value that you
assign to it. There are five types of scalar variables

• text
• integer
• unsigned integers
• real number
• money values (i.e. 2 decimal places)

Integer and unsigned integer types will be either 32 bit or 64 bit depending on the underlying system. If your
system supports 64 bit integers then Ember will use 64 bit int and uint types.

The example code below illustrates the creation of variables
$int_value = 9;
$uint_value = (uint)240983;
$text_value = "Some text value";
$real_value = 12.627;
$money_value = 123.45;

At any point in time, the type of a value can be changed by using the type cast notation from the C language. If,
for example, you wished to convert a numeric value into a text string, you would simply cast the value to the
appropriate type. The sample below would result in the variable $text_val containing “1234” as a textual string
rather than a number

$int_val = 1234;
$text_val = (text) $int_val;

Array and Assoc Types
Ember support two styles of arrays: normal and associative. A normal array is referenced (or indexed) using a
numeric value. The elements of the array are referenced as element 0, element 1, element 2 an so on. In
contrast, an associative array uses a textual key value to reference its elements. You may think of an associative
array as a simple, in-memory database. An normal array is accessed by specifying the index value between []
characters. An associative array key is provided between { } characters. Examples are shown below.

A feature common to both types of arrays is their ability to handle an element of any available type. This allows
you to create nested or multi-dimensional array. This is achieved by simply storing an array or assoc in an
element of another array or assoc.

$arrayval[0] = "Foo";
$arrayval[1] = 5;
$arrayval[2] = 1.23 + 5.38;

$assocval{“Fred”} = “Flintstone”;
$assocval{“Tom”} = “Hanks”;
$assocval{“Array”} = $arrayval;

Array Handling push() pop() shift() unshift() #

Assoc Handling - keys()

Page 3

Mathematical Expressions
Ember expressions are formed from mathematical equations incorporating literal values, values of variables and
values returned from function calls. Ember is a little more flexible than other languages such as C. It will allow
you to do maths operations on all data types including the text type. Adding two text values together results in
the concatenation of the two strings. You can also perform maths on values of different types by casting the
value to the correct type within the expression. Examples are given below.

$text_rval = "Hello" + " there!";
$int_val = 8 + 1;
$text_rval = (text)$int_val + " green bottles";

The first expression would result in the text value "Hello there!". The second would result in the integer value 9.
The final expression would result in the text value "9 green bottles" using the text representation of the value of
$intval from the previous line. Maths expression of any complexity, including any number of sub expressions
enclosed in () characters, are supported.

Ember provides the full range of “self modifier” operators such as increment, decrement etc. These operator
modify the value of the variable on the left hand side of the operator. The complete list is shown in the table
below.

Operator Description Example Result

++ Increment $val = 1; $val++ 2

-- Decrement $val = 5; $val-- 4

+= Self Add $val = 1; $val += 5; 6

-= Self Subtract $val = 10; $val -= 5; 5

/= Self Divide $val = 10; $val /= 5; 2

*= Self Multiply $val = 10; $val *= 2; 20

A special operator supported by Ember is the count operator written as the # sign. The count operator is used to
determine the size of certain variables. If you apply the count operator to a text value it will evaluate to the
number of characters in the string. If you apply it to an array it will evaluate to the number of elements in that
array. It is important that you are familiar with the count operator as many library functions return an empty
string or array to indicate an error. You can catch such a situation by testing for a count of 0. In the first
example below, $int_val would contain the value 5. In the second example, it would contain 3. The third
example shows how to test for an empty string.

$text_val = "Hello";
$int_val = # $text_val;

$array[0] = 0;
$array[1] = 1;
$array[2] = 2;
$int_val = # $array;

if (# $textVal == 0)
{
 echo(“String is empty!”);
}

Page 4

Conditions and Loops
Conditions are provided by Ember using the same syntax as C. That is, the conditional block is started by an 'if
(condition)'. The blocks of code are defined using the { and } character. Unlike C, you must always wrap code
blocks in { } characters (in C you don't have to if the code block is only one line long). After the initial code
block, an optional 'else' block may be defined.

Multiple parts of the conditional expression may be linked together using logical ANDs and ORs. Like C, the
syntax for an AND is && while the syntax for an OR is ||. As you will see in the example below, Ember
provides more flexibility than C in conditions containing text values. You can compare two text values using the
'==' equality test or the '!=' inequality test rather than having to use a function such as strcmp().

if ($int_val 5 && $int_val < 10)
{

echo("The value is between 5 and 10\n");
}
else
{

echo("The value is not between 5 and 10\n");
}

Ember supports only one form of looping - a 'while' loop. The syntax and operation of the while loop is identical
to the while loop offered by the C language. This includes the use of 'continue' and 'break' clauses to control the
flow of execution within the loop. The continue clause will force execution to return to the start of the enclosing
while loop. The break clause will force the loop to be exited immediately.

while ($intval < 10)
{

$intval = $intval + 1;
}
while ($charval != "")
{

$charval = readln($fd);
if ($charval == “Hello”)
{
 continue;
}
if ($charval == "Bye")
{

break;
}
echo($charval);

 }

User Defined Functions
As with most modern programming languages, Ember allows you to write user defined functions. The definition
of a Ember function is

funct functName (type arg, type arg ...)
{

statements
}

As the definition dictates, a function must be started with the funct label. The remainder looks like a C function
declaration in that there is a function name followed by a list of typed arguments. Any type may be passed to a
function and any type may be returned from a function. All values passed to a function are passed by value not
by reference. A few example functions are given below.

funct addition (int $value1, int $value2)
{

return ($value1 + $value2);
}

Page 5

funct merge (array $values)
{

$count = 0;
$result = "";
while ($count < # $values)

 {
$result = $result + $values [$count];
$count++;

 }
return ($result);

}

funct sequence (int $first, int $last)
{

$count = 0;
while ($first < $last)

 {
$array [$count] = (char) $first;
$first++;

 }
return ($array);

}

It must be noted that function declarations can only be made before any of the actual script code of the file. That
is, all functions must be defined before the main body of the script is reached.

Ember enforces a strict scope on variables used in user defined functions. Any variable referenced by the
function is defined as a local variable in that function even if there is a global variable by the same name.
Parameters are passed by value, not by reference, so any modification of the parameter variables is not reflected
outside the scope of the function. The only way to modify the value of variables outside the scope of the
function is by returning a value from the function or by explicitly referencing global variables as outlined below.

Ember supports the concept of explicitly accessible global variable by using a different syntax when referencing
the variable. If a variable is referenced as $variable then it is a variable within the current scope (a local variable
if it is referenced in a function, a global variable if referenced from the main code). If a variable is to be
explicitly referenced as a global variable then it can be referenced as @variable rather than $variable (a
preceeding “@” character rather than a “$” character). This will force the Ember symbol table management
routines to access the global symbol table rather than the symbol table associated with the current execution
scope.

User Defined Libraries
To help provide an efficient programming environment, Ember allows you to build a library of functions and
load the library into your script at run-time. This allows for effective re-use of code in the same way the
languages such as C allow you to re-use code by linking against libraries. The main difference is that the library
is not "linked" into the script, it is loaded on request at run-time (a little like a C shared library). If the functions
that were defined in the previous section of this manual were placed into a library called "mylib", a script could
access those functions by loading the library as depicted below.

load "mylib.lib";

/*
** Now we can use the functions from the “mylib” library
*/
$array = sequence(1,10);
$count = 0;
while ($count < # $array)
{

printf("Value %d is '%s'\n", $count, $array);
$count = $count + 1;

}

Page 6

The power and convenience of Ember libraries is most obvious when writing large WWW based applications
using w3e (Ember embedded in HTML). Like any application, there will be actions that you will need to
perform several times. Without the aid of libraries, the code to perform those actions would need to be re-coded
into each Ember enhanced web page (because each HTML file is a stand-alone program). By placing all these
commonly used functions into a library, each web page can simply load the library and have access to the
functions. This also provides a single place at which modifications can be made that are reflected in all web
pages that load the library.

Library files are not like normal Ember script files. A Ember script file is a plain ASCII text file that is parsed at
run-time by Ember. A library file contains pre-compiled versions of the Ember functions that will load faster as
they do not need to be re-parsed every time they are used. A Ember library file is created by using the -l flag of
the Ember interpreter. If a set of functions was placed in a file called mylib.e, a compiled version of the library
would be created using the syntax shown below.

ember –l mylib.e

The -l flag tells Lite to compile the functions and write the binary version of the functions to a file called
mylib.lib. This is similar to the concept of using the C compiler to create an object file by using the -c flag of the
compiler.

There are three points that should be noted about the use of Ember libraries. Firstly, it should be noted that a
Ember library can only contain functions (i.e. it cannot contain any "main body" code that you would normally
include in a script file). Secondly, like functions themselves, a library can only be loaded into a Ember script
prior to the start of the main body code. Finally, the path given to the load command within the script does not
enforce a known location for the library file. If you specify the library file as "mylib.lib" then Ember will expect
the library file to exist in the current directory. You can of course provide a complete pathname rather than just a
filename to the load command.

Dynamic Loading Modules
Included with Ember is a library of predefined functions known as the Standard Module. In Ember, a module is
used to provide an interface between an Ember script and any external functionality. The Standard Module
provides routines for string manipulation, maths, and access to operating system features such as file
input/output. To provide further flexibility, Ember supports dynamic loading of modules at run-time. This
allows features such as database access or network operations to be made available to an Ember script even
though they are not part of the standard language.

Dynamic Modules are loaded into a script using the modload directive. Once loaded, all the functions provided by
the module may be called from the Ember script. Included below is an example that loads the Mini SQL
database access module and performs some basic operations against a database. Dynamic modules for Ember
can be found on the Hughes Technologies web site at www.Hughes.com.au

/*
** Load the mSQL module using the modload directive
*/

modload “mod_msql”;

/*
** Connect to the server and insert a new staff record. Note that there
** is no error checking done in this example. It is not intended as an
** instruction into the use of mSQL – just an example of modload
*/
$sock = msqlConnect(“msql.mydomain.com”);
msqlSelectDB($sock, “my_database”);
$query = “insert into staff values (‘Fred’,’Smith’,’123 Hill St. Southport, Qld 4217’)”;
msqlQuery($sock, $query);
msqlClose($sock);

Page 7

Ember’s Standard Module
The standard module is to Ember as the standard C library is to C. It is a library of functions that are available to
all Ember programs. It provides basic functionality for string manipulation, file IO and other normal expectations
of a programming language. Outlined below is a description of each of the functions available within the
standard module.

Input Output Routines

echo ()
echo (string)

text string

echo() outputs the content of argument passed to it.. Any variables that are included in string are evaluated and
expanded before the output is generated.

$name = "Bambi";
echo("My name is $name\n");

printf ()
printf (format [, arg ...])

text format

printf() produces output in a manner similar to the echo function except that it allows for the output to be
formatted based on the format argument. The semantics of the function are the same as those of printf() in C.
The printf() format can include field width and justification information. Specification of a format field as
"%17s" will generate a right justified value 17 characters wide. Prefixing the field width definition with the '-'
character will produce a left justified result.

Example :
$name = "Bill";
printf("My name is also %10s\n", $name);

fprintf ()
fprintf (fd , format [, arg ...])

int fd
text format

Like printf(), fprintf() produces text output based on the content of the format string and the arguments passed to
the function. Unlike printf(), fprintf() sends the output to a file or other object referenced by the file descriptor
passed as its first argument. The file descriptor must be created using the open() function. See the description of
open() for more information.

Example :
$name = "Bambi";
$fd = open("/tmp/name","");
fprintf($fd, "My name is %10s\n", $name);
close($fd);

Page 8

sprintf ()
sprintf (format [, arg ...])

text buffer
text format

Like printf(), sprintf() produces formatted text output based on the content of the format string and the arguments
passed to the function. However, the output is stored in the text buffer provided as the first argument to the
function call rather than being printed as output.

Example :
$name = "Bambi";
$outbuf = sprintf("My name is %10s\n", $name);
echo($outbut);

open ()
int fd = open (path , access)

text path
text access

open() opens the object (usually a file) pointed to by path for reading and/or writing as specified by the access
argument, and returns a file descriptor for that newly opened file. The possible values for the access flags are:

Flag Description

< File is opened for reading

> File is opened for writing

>> File is opened for appending

<> File is opened for reading and writing

<P Create a named pipe in the file system and open it for reading

>P Create a named pipe in the file system and open it for writing

<| The contents of the path argument is a command string. The command is executed and
the output of the new process is available to be read from the returned file descriptor

>| The contents of the path argument is a command string. The command is executed and
any data written to the returned file descriptor is passed as input to the new process

An error is indicated by a returned value of –1. In such a case, the system variable $ERRMSG will contain the
error message.

It should be noted that both the named pipe related modes create the pipe prior to accessing it. If the pipe exists
in the file system prior to the call, open() will fail.

Example :
$fd = open(“/tmp/output”, “>”);
if ($fd < 0){

echo(“Error : $ERRMSG\n”);
exit(1);

}
fprintf($fd,”This is a test\n”);
close($fd);

$fd = open("ls -l /etc", "<|");
$line = readln($fd);
echo($line);
close($fd);

Page 9

It should also be noted that the command string provided when reading from or writing to a process is executing
using exec() not by passing it to system() or to the shell. As a result the failure to execute the specified
command is trapped and a -1 is returned in that case. However, because the shell is not involved there is no file
globbing performed on the command string. If you require file globbing then pass your command string to the
shell using syntax as outlined below. Note that you will no longer receive an error of the command string
doesn’t execute (because Ember will see that /bin/sh executes properly and return that status).

$fd = open("/bin/sh –c ‘ls -l /etc/*.txt’", "<|");
$line = readln($fd);
echo($line);
close($fd);

close ()
close (fd)

int fd

close() closes an open file descriptor. If the descriptor relates to a file or a pipe, the file or pipe is closed. If the
descriptor is a process, the standard input of the process is closed (and the process should terminate when it reads
an EOF from its input).

Please note that if you do not close all file descriptors you open then your program will eventually run out of file
descriptors. Naturally, all open descriptors are closed automatically when the script exits.

Example :
$fd = open("/tmp/input", "<");
close ($fd);

readln ()
readln (fd)

int fd

readln() reads a line of text from the nominated file descriptor and returns the data. The end-of-line value is not
removed from the data returned. An empty string will be returned when the end of file is reached or an error is
encountered. If an error occurred, $ERRMSG will be set to a non-empty string on error.

Example :
$fd = open("/etc/passwd","<");
$line = readln($fd);

readtok ()
readtok (fd , token)

int fd
text token

readtok() reads data from the file descriptor until it finds the character specified as the token in the input data.
Only the data read prior to the token is returned, the token character itself is not.

Please note that the token is a single character value. If more than one character is passed in the token argument,
only the first character is used.

Example :
$fd = open("/etc/passwd", "<");
$username = readtok($fd, ":");
printf("Username is '$username'\n");
close($fd);

Page 10

String Manipulation Routines

split ()
split (str , token)

text str
text token

split() splits the contents of a variable into multiple substrings using the value of token as the separator character.
The result of splitting the string is returned as an array. If more than one character is passed as the token, all but
the first character is ignored.

Example :
$line = "bambi:David Hughes:Hughes Technologies";
$info = split($line,":");
printf("Username = $info[0]\n");
printf("Full name = $info[1]\n");
printf("Organisation = $info[2]\n");

strseg ()
strseg (str , start, end)

text str
int start
int end

strseg() returns a segment of the string passed as the str argument. The segment starts at start characters from the
start of the string and ends at end characters from the start of the string. In the example below, $sub will contain
the string "is a".

Example :
$string = "This is a test";
$sub = strseg($string, 5, 8,);

Page 11

chop ()
text chop (str)

text str

chop() removes the last character from the text string str and returns the new value. The primary use of this
function is for chopping end-of-line characters off strings read from files with readln().

Example :
$line = readln($fd);
$line = chop($line);

tr ()
text tr (str , expr1 , expr2)

text str
text expr1
text expr2

tr() performs text translations on the string argument str based on the contents of expr1 and expr2 and returns the
modified string value. expr1 and expr2 are sets of characters. Any character that is found in str that matches a
character in expr1 is translated to the corresponding character from expr2. The character sets can be defined by
listing individual characters or by providing character ranges (such as A-Z to indicate all characters between A
and Z). The example below will translate any upper case characters to lower case and translate any exclamation
marks '!' found in the string with a full stop '.'

Example :
$str = "Hello There!";
$str = tr($str, "A-Z!", "a-z.");

sub ()
text sub (str , expr1 , expr2)

text str
text expr1
text expr2

sub() performs string substitutions on the string argument str based on the contents of expr1 and expr2. If the
string value passed as expr1 is found anywhere in str it is substituted for the value if expr2. The example below
would leave the value "This was a test" in $str. Note that unlike tr() the length of the string can be modified by
sub() as there is no restriction on the content or length of the value of expr2.

Example :
$str = "This is a test";
$str = sub($str, "is", "was");

substr ()
text substr (str , regexp , pattern)

text str
text regexp
text pattern

substr() extracts substrings from str based on the regular expression regexp and the extraction pattern pattern.
Any parts of the string that are matched by parts of the regular expression enclosed in parenthesis are made
available to the extraction pattern. The first such substring is available as $1, the second as $2 and so on. The
string value created by expanding any such variables in pattern is returned. The example below would produce
the string "Who's Jack?" as the regular expression enclosed in parenthesis will match a word containing a leading
capital letter followed by lower case letter.

Page 12

Example :
$str = "well, Jack is alright.";
$new = substr($str, ".*, ([A-Z][a-z]*) .*", "Who's $1?");

expandText ()
text expandText (str)

text str

expandText() performs a variable expansion on the value provided as the str argument and returns the resulting
text value.

Example :
$first_name = “David”;
$last_name = “Hughes”;
$info = “My name is $first_name $last_name”;
$new = expandText($info);

crypt ()
text crypt (str, salt)

text str
text salt

crypt() encrypts the string provided in the str argument using the first two characters of the salt argument as the
key. If more than 2 characters are provided only the first 2 are used. The crypt implementation is compatible
with the old-styled crypt included in UNIX distributions. This is a one-way crypt function so you cannot decrypt
the resulting string. The first two letters of the encrypted value will be the salt used to generate it.

Example :
$mypw = crypt(“My secret info”, “AB”);
$salt = substr($mypw, 0, 2);
$testval = crypt($someValue, $salt);
if ($testVal == $mypw)
{
 echo(“test value matched password”);
}

char2ascii ()
char2ascii (character)

text character

char2ascii returns the ASCII code of the first character of the given text string.

Example :
$ascii = char2ascii (“A”);
echo(“The ASCII value of A is $ascii \n”);

ascii2char ()
ascii2char (ascii)

int ascii

ascii2char returns the character associated with the given ASCII code.

Example :
$ascii = char2ascii (“A”);
$char = ascii2char($ascii + 1);

Page 13

echo(“The character after A is $char \n”);

setchar ()
setchar (str., value, offset)

text str,
text value;
int offset

setchar () sets the value of the character located at the specified offset in the specified string to the character
value provided. The modified string is returned.

Example :
$string = “Hello”;
$string = setchar($string, “A”, 0);

getchar ()
getchar (str., offset)

text str,
int offset

getchar () returns the character value located at the specified offset of the specified string.

Example :
$string = “Hello”;
$char = getchar($string, 0);

Page 14

System Services Routines

chdir ()
chdir (path)

text path

chdir() changes directory to the specified path.

Example :
if (chdir("/tmp/myDirectory") < 0)
{

echo("ERROR : $ERRMSG\n");
}

exit ()
exit (status)

int status

exit() terminates the execution of the script and returns the status value specified to the calling application..

Example :
if ($value < 0)
{

exit (-1);
}

fatal()
fatal (message)

text message

The fatal() function will generate a standard runtime error message on the standard error of the process and
terminate the script.

Example :
If ($fd < 0)
{
 fatal(“Can’t open file : $ERRMSG”);
}

getcwd ()
text getcwd ()

getcwd() returns the name of the directory in which the Ember script is currently executing.

Example :
$dir = getcwd() ;

Page 15

geteuid ()
int geteuid ()

geteuid() returns the effective user ID of the user executing the Ember script.

Example :
$euid = geteuid() ;

getgid ()
int getgid ()

getgid() returns the process group ID of the process running Ember.

Example :
$gid = getgid() ;

getpid ()
int getpid ()

getpid() returns the process ID of the process running Ember.

Example :
$pid = getpid() ;

getppid ()
getppid ()

getppid() returns the process ID of the process that is the parent of the process running Ember.

Example :
$parent = getppid() ;

getuid ()
int getuid ()

geteid() returns the real user ID of the user executing the Ember script.

Example :
$uid = getuid() ;

kill ()
kill (pid , signal)

int pid
int signal

kill() sends the specified signal to the specified process.

Example :
if (kill(1, 9) < 0)
{

echo("ERROR : $ERRMSG\n");
}

Page 16

link ()
link (path , new)

text path
text new

link() will create a new link named new to the file specified by path. You cannot create a link over a file system
boundary.

Example :
if (link("/tmp/foo", "/tmp/baa") < 0)
{

echo("ERROR : $ERRMSG\n");
}

mkdir ()
mkdir (path)

text path

mkdir() creates the directory specified by path.

Example :
if (mkdir("/tmp/myDirectory") < 0)
{

echo("ERROR : $ERRMSG\n");
}

random ()
int random ()

random() returns a random number .

Example :
$num = random();

rename ()
rename (old , new)

text old
text new

rename() renames the specified file from the old name to the new name. You cannot rename files over the
boundary of a file system.

Example :
if (rename("/tmp/foo", "/tmp/baa") < 0)
{

echo("ERROR : $ERRMSG\n");
}

Page 17

rmdir ()
rmdir (path)

text path

rmdir() removes the specified director from the file system.

Example :
if (rmdir("/tmp/myDirectory") < 0)
{

echo("ERROR : $ERRMSG\n");
}

sleep ()
sleep (time)

int time

sleep() will suspend operation of the script for time seconds.

srandom ()
srandom (seed)
 int seed;

srandom() seeds that random number generator used to product the numbers made available via the random()
function. By seeding the number generator with a semi-random number you can introduce further “randomness”
into the number sequence

Example :
$seed = getpid() * getppid() ;
srandom ($seed);

stat ()
stat (path)

text path

stat() provides an interface to the stat() system call. The information from stat() is returned as an array. The
elements of the array are:

Field Description

0 Inode number

1 File mode

2 Number of links to file

3 UID

4 GID

5 Size of file

6 atime

7 mtime

8 ctime

9 Block size of file system

10 Number of file system blocks used

Page 18

Example :
$sbuf = stat("/tmp/foo");
if (#$sbuf == 0)
{

echo("ERROR : $ERRMSG\n");
}
else
{

echo("/tmp/foo is $sbuf[5] bytes long\n");
}

symlink ()
symlink (path , new)

text path
text new

symlink() will create a symbolic link called new to the file specified by path.

It should be noted that if the installation process determined that your operating system does not support the
symlink() system call this function will not be available.

Example :
if (symlink("/tmp/foo", "/tmp/baa") < 0)
{

echo("ERROR : $ERRMSG\n");
}

system ()
system (command)

text command

system() will execute the command line specified by command in a subshell. Any output generated by the
command is included in the HTML output. The exit status of the command is returned to the caller.

Example :
if (system("ls -l") != 0)
{

echo("Error running ls! \n");
}

Page 19

test ()
test (test, filename)

text test
text filename

test() offers functionality similar to the test program provided by the shell. Given a filename and a test, it will
determine if the file matches the test specification. If it matches, 1 is returned otherwise 0 is returned. A table
outlining the available tests is shown below.

Test File Type

"b" Block mode device

"c" Character mode device

"d" Directory

"p" Named pipe

"s" Non-empty regular file

"f" Regular file

"u" File is setuid

"g" File is setgid

Example :
if (test("b", "/tmp/foo") == 1)
{

echo("/tmp/foo is a block device\n");
}

truncate ()
truncate (path , length)

text path
int length

truncate() will set the length of the file to the specified length.

Example :
if (truncate("/tmp/foo", 0) < 0)
{

echo("ERROR : $ERRMSG\n");
}

unlink ()
unlink (path)

text path

unlink() removes the named file from the file system. If the file does not exist or another error occurs, a negative
value is returned and the $ERRMSG variable is set to an appropriate error message

Example :
if (unlink("/tmp/foo") < 0)
{

echo("ERROR : $ERRMSG\n");
}

Page 20

Date / Time Related Routines

time ()
time ()

time() returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds as an integer value.

Example :
$time = time();
echo("The number of seconds since Jan 1 1970 is $time\n");

strftime ()
time (fmt, time)

text fmt; int time;

strftime() returns a text representation of the UNIX time value time based on the format string passed as fmt.
The available formatting options are

Option Description

%a day of week, using locale's abbreviated weekday names

%A day of week, using locale's full weekday names

%b month, using locale's abbreviated month names

%B month, using locale's full month names

%d day of month (01-31)

%D date as %m/%d/%y

%e Day of month (1-31 with single digits preceded by a space)

%H hour (00-23)

%I hour (00-12)

%j Day of year (001-366)

%k hour (0-23, blank padded)

%l hour (1-12, blank padded)

%m month number (01-12)

%M minute (00-59)

%p AM or PM

%S seconds (00-59)

%T time as %H:%M:%S

%U week number in year (01-52)

%w day of week (0-6, Sunday being 0)

%y year within the century (00-99)

%Y year including century (e.g. 1999)

Page 21

Example :
$time = time();
$message = strftime("The time is %H:%M:%S on %A, %e %B", $time);
echo("$message\n");

ctime ()
ctime (time)

int time

ctime() converts a value returned by time() into the standard UNIX text representation of the date and time.

Example :
$time = time();
printf("The date and time is '%s'\n",
ctime($time));

time2unixtime ()
time2unixtime (sec, min, hour, day, month, year)

int sec , min , hour , day , month , year;

time2unixtime() provides a facility by which you can create a standard UNIX time value (i.e. the time since
00:00:00 GMT, Jan. 1, 1970, measured in seconds) for any specified date/time.

Example :
$time = time();
$time2000 = time2unixtime(0,0,0,1,1,2000);
printf("The number of seconds before the end of the century is %d\n",
$time2000 - $time);

unixtime2* ()
unixtime2* (time)

int time;

The above functions take a UNIX time value (i.e. seconds since Jan 1, 1970) and return an integer value
representing part of the time information. A list of the functionality provided by the individual routines is
shown below.

• unixtime2year() - The year in which time falls
• unixtime2month() - 1 to 12 representing the month in which time falls
• unixtime2day() - 1 to 31 representing the day in which time falls
• unixtime2hour() - 0 to 23 representing the month in which time falls
• unixtime2min() - 0 to 59 representing the minute in which time falls
• unixtime2sec() - 0 to 59 representing the second from the start of the minute in which time

falls

Example :

$time = time();
$year = unixtime2year($time);
$month = unixtime2month($time);
$day = unixtime2day($time);

echo("The date is $day/$month/$year\n");

Page 22

Password file Related Routines

getpwnam ()
getpwnam (uname)

text uname

Returns the passwd file entry for the user specified by uname. The result is returned as an array with the array
elements defined as below.

Element Contents

0 username

1 password

2 UID

3 GID

4 GECOS

5 home directory

6 shell

Example :

$pwinfo = getpwnam("bambi");
if (# $pwinfo == 0)
{

echo("User 'bambi' does not exist!\n");
exit(1);

}
printf("Bambi's home directory is %s and his uid is %d\n",
$pwinfo[5], (int)$pwinfo[2]);

getpwuid ()
getpwuid (UID)

int UID

getpwuid() returns the same information as getpwnam() but uses a UID to identify the user rather than a
username. See the definition of getpwnam() above for details of the return format and usage.

Page 23

Network Related Routines

gethostbyname ()
gethostbyname (host)

text host

gethostbyname() returns an array of information about the specified host. Element 0 of the array contains the
hostname while element 1 contains the hosts IP address.

Example :
$info = gethostbyname("www.Hughes.com.au");
if (# $info == 0)
{

echo("Host unknown!\n");
}
else
{

echo("IP Address = $info[1]\n");
}

gethostbyaddress ()
gethostbyaddress (addr)

text addr

gethostbyaddr() returns an array of information about the specified host. Element 0 of the array contains the
hostname while element 1 contains the hosts IP address.

Example :
$info = gethostbyaddr("127.0.0.1");
if (# $info == 0)
{

echo("Host unknown!\n");
}
else
{

echo("Host name = $info[0]\n");
}

isInCidrBlock
int isInCidrBlock(addr, block)

text addr;
text block;

isInCidrBlock() will determine if a specified IP Address or network is within a particular CIDR network block.
Both arguments are specified in CIDR “slash” notation. If no network CIDR mask length is provided (i.e. the
slash component) that it is assumed to be a /32, that is a single IP address.

Example :
isInCidrBlock(“101.1.2” , “10.1.1.0/24”);
isInCidrBlock(“10.1.1.0/24” , “10.1.0.0/16”) ;

Page 24

HTML / WWW Related Routines

addHttpHeader ()
addHttpHeader (str)

text str

addHttpHeader() adds the provided text string to the information returned to the client’s browser within the
headers of the HTTP response. There is no return value.

Example :
addHttpHeader(“Pragma: no-cache”);
addHttpHeader(“Set-Cookie: $name=$value;”);

forceHttpAuth ()
forceHttpAuth (area, path)

text area
text path

forceHttpAuth() generates the headers required to request username/password authentication from a browser. It
then ignores the data received. This can be used to invalidate any cached authentication data etc. The area
argument is used to uniquely identify the application requestion authentication. The path argument provides the
location of a file containing HTML that is to be sent to the browser along with the authentication request. If path
is an empty string a default page is returned.

Example :
forceHttpAuth(“My App”,”/auth_error.html”);

httpAuth ()
array httpAuth (area, path)

text area
text path

httpAuth() is used to request authentication information from the browser for the specified area. An array is
returned to the calling application providing the supplied username in element 0 and the password in element 1.
As with forceHttpHeader(), the path argument identifies and HTML file to be included in the response to the
browser. If an empty string is passed as the argument then a default page is sent.

Example :
$data = httpAuth(“My App”, “/auth_error.html”);
$uname = $data[0];
$passwd = $data[1];

includeFile ()
includeFile (filename)

text filename

includeFile() may be used to include the contents of the specified file in the HTML output sent to the browser.
The contents of the file are not modified or parsed in any way. If the first character of the file name is a / then the
filename is an absolute path name from the root directory of the machine. If it is note, the filename is a relative
path from the location of the script file.

Example :
includeFile("standard_footer.html");

Page 25

setContentType ()
setContentType (str)

text str

setContentType() can be used to override the default content type sent to in the HTML header of the generated
HTML output. If it is to be used, it must be the first line of the script. Note : not even a blank line may preceed a
call to setContentType().

Example :
setContentType("image/gif");

setHttpResponse ()
setHttpResponse (str)

text str

set HttpResponse() can be used to override the default HTTP Response code sent to the browser. The protocol
standard defining HTTP should be checked to determine the available valid response codes and the actions
associated with them.

Example :
setContentType("302 Foundf");

urlEncode ()
urlEncode (str)

text str

urlEncode() converts a normal text string into a URL encoded string. URL encoding translates various special
characters, such as spaces and control characters, into a textual form. This allows them to be passed as data
within a URL or when used with the GET method of a form.

Example :
$value = urlEncode($value);
$url = “http://some.host.com/test.ehtml?value=$value”;

Page 26

Misc Routines

defined ()
defined (var)

variable var

The defined() function will determine if the specified variable name or element of a complex t variableexists
and has a value assigned to it. If the variable is defined, a non-zero value is returned.

Example :
If (defined($foo))
{
 echo(“Yes, the variable exists\n”);
}

If (defined($assoc{“first_name”}))
{
 echo(“Yes, the assoc element exists\n”);
}

Page 27

Embedding Ember in HTML Pages
w3e is an application that processes Ember code that has been embedded within an HTML document. This
allows a web developer to generate dynamic content directly from within their HTML documents. The full
power of Ember, including shared Ember libraries and dynamic loaded modules,

Scripting Tag
To facilitate the w3e extensions to normal web pages, Ember code is included in your HTML code. It is
differentiated from normal HTML code by including it inside <! > tags. As an example, a w3e version of the
legendary Hello World program is provided below.

<HTML>
<HEAD>
<TITLE>Hello World from w3e</TITLE>
<HEAD>
<BODY>
<CENTER>
<H1>Introduction to w3e</H1>
<P>

<!

echo("Hello World\n");
>
</CENTER>
</BODY>
</HTML>

As you can see, there is a line of code in the middle of the HTML page, enclosed in <! > tags. When the page is
loaded through the w3e CGI program, anything enclosed in <! > tags is parsed and executed as an embedded
ember script. Any output generated by the program is sent to the user's browser. In this case, the string "Hello
World" would be sent as part of the HTML page to the browser. The remainder of the page is sent to the browser
unmodified.

There can be any number of w3e tags within a single page and there can be any number of lines of code within a
single w3e tag.

To execute the script depicted in figure do not specify the path to the file in the URL as you would normally do
as your browser will just be sent the unprocessed HTML document. To execute the script you must specify a
URL that executes the w3e binary and tells it to load and process your script. The w3e binary is called w3e and
will usually be located in the /cgi-bin directory (if it isn't there contact your system administrator). If the normal
URL of a w3e enhanced web page is /staff/lookup.ehtml, you would load it using the following URL:

/cgi-bin/w3e/staff/lookup.ehtml

This URL instructs the web server to execute the w3e binary and tells it to load the /staff/lookup.html script file.
Some web servers can be configured to execute a CGI based on the suffix of the requested file. Such a server
could be configured to automatically execute the w3e CGI program for every file with a suffix of .ehtml. To
configure the popular Apache web server to automatically process all .ehtml files with w3e, simply add the
following to your httpd.conf file

AddType application/ember .ehtml
Action application/ember /cgi-bin/w3e

Page 28

Form Data
One thing virtually all CGI type programs have in common is that they process the contents of an HTML form.
The form data is passed to the CGI program via either a GET or a POST method by the http server. It is then the
responsibility of the CGI script to decypher and decode the data being passed to it. w3e greatly simplifies this
process by converting any form data passed to a script into global Ember variables within the Ember Virtual
Machine. These variables can then be accessed by your script code.

When an HTML form is defined, a field name is given to each of the elements of the form. This allows the CGI
to determine what the data values being submitted actually mean. When the data is passed to w3e, the field
names are used as the variable names for the global variables. Once a set of variables has been created for each
form element, the values being passed to the script are assigned to the variables. This is done automatically
during start-up of the w3e program.

As an example, imagine that the following form was defined in an HTML page.

<FORM ACTION=/cgi-bin/w3e/my_stuff/test.ehtml METHOD=POST>
<INPUT NAME=username SIZE=20>
<INPUT NAME=password SIZE=20 TYPE=PASSWORD>
<SELECT NAME=user_type>
<OPTION VALUE="casual">Casual User
<OPTION VALUE="staff">Staff Account
<OPTION VALUE="guest">Temporary Guest Account
</SELECT>
</FORM>

In the example we have defined three fields within the form, two text entry fields called username and password,
and a menu called user_type. We have also specified that the action for the form is to call w3e and tell it to
process /my_stuff/test.html passing the form data via the POST method. When the data is submitted, the values
entered for the three form fields are passed to w3e. It then creates three global variables called $username,
$password and $user_type, and assigns the user's data to those variables. The values can then be accessed within
the Ember script code embedded in test.ehtml by referencing the variables.

Security Related Features
When building "real" applications with a package such as w3e, security of your application program itself can
become an issue. Because the actual program code is embedded in the HTML code, anyone wishing to obtain a
copy of your source code would just need to access the w3e enhanced web page directly rather than accessing it
via the w3e CGI program (if you are web server doesn’t auto-process as outlined earlier). If a user did this, the
source code would not be processed and would appear in the HTML sent to the browser. If a user saved the
source of the page from their browser they would have a full copy of your source code on their machine.
Naturally, this is a major problem for people who write proprietary applications. To overcome this problem we
suggest that you place as much of your proprietary code in a precompiled Ember library and load it into your
embedded script. Details of library files are outlined in the Introduction section of this document.

W3e also provides facilities to limit it’s capabilities on a per script basis. By using the runtime configuration
you can limit or disable filesystem access external program execution. Please see the Access Control and
Runtime Configuration section of this manual for full details.

Page 29

Access Control and Runtime Configuration
w3e supports restricted system resource access via a runtime configuration file. The entries in the config file can
be used to tighten the security associated with providing access to ember enhanced web pages.

The config file is located in the installation directory (usually /usr/local/ember) and is called w3e.conf. When
w3e is called upon to execute a script, the filesystem path of the script (not the web page's URL) is checked
against the contents of the config file. The file is split into sections where each section relates to a particular file
path prefix. If the path of the script matches the path prefix of a section then the config entires of that section are
loaded.

A default config section can be specified by using the * character as the prefix. The default section is loaded for
all accesses. Loading of the config file terminates once the first section other than default section is matched
against the script's path.

The config items available are defined below

Item Description

Allow_Exec Controls permission for execution of external programs via the system and open
module routines.

Allow_File_Read Controls file reading

Allow_File_Write Controls file writing

Exec_Path_Prefix If exec is allowed the execernal program's path must start with this prefix

File_Path_Prefix Any file access must refer to a file that has the specified path prefix

Local_Files_Only Only files in the current directory can be accessed. chdir is also disabled.

And example config file is included below (it is also available in the misc directory of the distribution)

w3e.conf

w3e supports a range of configuration options that can allow it's to be restricted
based on the wishes of the system administrator. Each option is associated with
a file's path in the filesystem (not the URL path associated with it's web page).
The first section that matches the file's path will be used. If a default section
is provided (using the [*] path) then it is loaded but the search for a specific
path will continue.

This file must be installed in the installation directory. By default
it should be /usr/local/ember/w3e.conf

A path of * indicates the default settings. A match on this section
doesn't terminate the config file scan.
[*]
 Allow_Exec = False

If the script's pathname (not URL path, this is the real filesystem
path we are talking about) has a prefix of /foo then apply the
following config options. This will replace any of the hardcoded
default settings of those loaded from the default section above
[/foo]
 Allow_Exec = True
 Local_Files_Only = True

Load some settings for scripts located under the /baa directory
[/baa]
 Allow_Exec = False
 Allow_File_Read = True
 Allow_File_Write = False
 Exec_Path_Prefix = /usr/local

Page 30

Embedding Ember in Applications

Overview
One of the main features of Ember is that it can be embedded into other applications. If your application
requires features such as macros or any form of programmatic control, then embedding Ember into your
application could be a solution.

Embedding Ember into your code is very simple and requires the following steps

• Create an Ember Virtual Machine
• Load your script code into the VM
• Add any variables to the VM that your script may use
• Parse / Compile the code and report an syntax errors
• Execute the script watching for any run-time errors
• Access the variables of the script to retrieve any result data

To create a new Ember virtual machine simply call the eCreateScript() function. It will return you a pointer to a
newly created and initialized virtual machine structure.

Your ember source code can be located either in a file or in an array buffer. To load your script from a file, use
the eFileSource(script, path) function, passing it a pointer to your Ember VM and a path to the file. To load your
script from a buffer, use the eBufferSource(script, code) function passing it your VM pointer and a pointer to a
char array containing your script code.

The source code will probably perform some programmatic operation on a set of pre-defined variables. If that is
the case, those variables must exist in the VM before the script is compiled. You can create any variables you
wish by calling the eCreateVariable(script,varName) function. The variable will be created in the VM’s symbol
table but it will not contain any value. To define a value for the variable, you must use one of the following
functions. The symbol argument is the value returned from the call to eCreateVariable(). Each function will
store the provided value into the symbol table and set the type of the variable to the specified type.

• eSetIntValue(script, symbol, integerValue)
• eSetUintValue(script, symbol, uintegerValue)
• eSetRealValue(script, symbol, realValue)
• eSetTextValue(script, symbol, textValue)

Once the VM has been loaded with the script and any variables, the script can be compiled. To compile the
script simply call eParseScript(script). If it returns a negative value then a syntax error or similar compile time
error was encountered. Details of the error and its location can be found using the eGetLineNum(script),
eGetSourceName(script) and eGetErrorMsg(script) routines.

If the script compiled properly then it can now be executed. The script can be executed by calling
eRunScript(script). If a negative value is returned then a runtime error was encountered. As with the compile
time errors mentioned above, the location and description of the error can be determined by using the
eGetLineNum(script), eGetSourceName(script) and eGetErrorMsg(script) routines.

Once the script has executed, the value of the scripts variables can be accessed using
eGetVariableValue(script,varName). The value is always returned as a textual representation of the value (i.e. a
char string representation).

Page 31

API Reference

eCreateScript ()
ember *eCreateScript ()

eCreateScript() returns a pointer to a newly created and initialised Ember Virtual Machine structure. The
returned pointer is used by all other Ember API routines to control, modify, or access the contents of the virtual
machine. A NULL pointer will be returned upon failure.

Example :
ember *script;
script = eCreateScript ();

eFileSource ()
int eFileSource(script, path)
 ember *script;
 char *path

eFileSource() informs the VM that the script code is located in the file specified in the path argument. The file is
opened and internal references to the file are initialised. If the file could not be opened, a negative value is
returned to indicate and error. Otherwise a zero value return indicates success.

Example :
If (eFileSource(script, “/tmp/test.e”) < 0)
{
 printf(“Couldn’t open script file\n”);
}

eBufferSource ()
eBufferSource(script, buffer)
 ember *script;
 char *buffer

eBufferSource() informs the VM that the script code is located in an in-memory character array. Because a
pointer to the buffer is stored within the VM structure, it is important that the contents of the buffer are not
modified prior to the script being parsed.

Example :
char source_code[] = “$foo = 1 + 2; echo(\”$foo\n\”);”;
eBufferSource(script, source_code);

eCreateVariable ()
e_stab *eCreateVariable(script, varName)
 ember *script;
 char *varName;

eCreateVariable() creates an uninitialised global variable in the VM. The varName argument specifies the name
of the new variable. A pointer to the symbol table entry is returned.

Example :
e_stab *symbol;
symbol = eCreateVariable(script, “test_value”);

Page 32

eSetIntValue ()
eSetUintValue()
eSetRealValue()
eSetTextValue()

eSetIntValue (script, symbol, intVal)
 ember *script;
 e_stab *symbol

int intVal;

The eSet*Value() set of routines allow you to store a value of the specified type into a variable. The variable is
referenced by the symbol argument (usually the result of a call to eCreateVariable). In each variant of this
routines, the type of the third argument is the same as the type specified in the functions name (i.e. an int value
for eSetIntValue, a text value ro eSetTextValue etc).

Example :
eSetIntValue(script, symbol1, 32);
eSetTextValue(script, symbol2, “This is a test”);

eParseScript()
int eParseScript (script)
 ember *script;

eParseScript() parses and compiles the script code into the VM’s internal byte code format. If there is a problem
compiling the code, such as a syntax error or reference to undefined variables, an error will be returned. Errors
are indicated by a negative return value.

Example :
If (eParseScript(script) < 0)
{
 printf(“Error compiling script”);
}

eRunScript()
int eRunScript (script)
 ember *script;

eRunScript() executes the compiled script code that is stored in the VM. Errors are indicated by a negative
return value.

Example :
If (eRunScript(script) < 0)
{
 printf(“Error executing script”);
}

eGetErrorMsg()
text eGetErrorMsg (script)
 ember *script;

eGetErrorMsg() returns a char pointer to a textual representation of the last error encountered. It may indicate a
compile time error or a runtime error depending on the last actions undertaken by the VM.

Example :
printf(“Error is : %s\n”, eGetErrorMsg());

Page 33

eGetLineNum()
int eGetLineNum (script)
 ember *script;

eGetLineNum() returns the line number on which the last error was encountered by the virtual machine. If the
error was a runtime error that occurred in a loaded library file, the line number will reflect the line number of the
library files source code on which the error occurred.

Example :
printf(“Error is at line %d\n”, eGetLineNum());

eGetSourceName()
text eGetSourceName (script)
 ember *script;

eGetSourceName() returns the name of the script source. If the source was loaded from a file, the source name
will be the name of that file. If the script was provided by a buffer source, the source name will be “input
buffer”. Please note that the source name does not always indicate the file in which an error occurred as the
script may have loaded a precompiled library in which the error was encountered. See eGetCurFileName() for
more information.

Example :
printf(“This script was loaded from %s\n”, eGetSourceName(script));

eGetCurFileName()
text eGetCurFileName(script)
 ember *script;

eGetCurFileName() returns the name of the file in which the currently executing script code was original
located. If the current code was loaded from a precompiled library, the returned file name will be the name of
the library file. Otherwise it will be the name of the script source. In conjunction with other routines above, this
routine can be used to determine the location of an error.

Example :
printf(“Error found at line %d of file %s while processing script %s\n”,

eGetLineNum(script),
eGetCurFileName(script),
eGetSourceName(script));

eGetVariableValue()
text eGetVariableValue(script, varName)
 ember *script;
 char *varName;

eGetVariableValue() extracts the contents of the specified global variable from the virtual machines symbol
table. The result value is always returned in text form rather than the native type of the variable.

Example :
Printf(“The value of the $result variable is ‘%s’ \n”,
 EGetVariable(script, “result”));

Page 34

Example
/*
** This is a simple program that demonstrates how an ember script can be embedded in a c program and
** used to programmatically evaluate expressions within the c code. The script code is in an array buffer.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include "ember.h"

char source_code[] = "$result = $x + $y; ";

int main(argc, argv)
 int argc;
 char *argv[];
{
 ember *script;
 e_stab *symbol;
 char *result;

 /*
 ** Setup the script and point it to our script code buffer (the source_code array)
 */
 script = eCreateScript();
 eBufferSource(script, source_code);

 /*
 ** Add the required variables to the VM
 */
 symbol = eCreateVariable(script,"x");
 eSetIntValue(script,symbol, 10);

 symbol = eCreateVariable(script,"y");
 eSetIntValue(script,symbol, 17);

 /*
 ** Parse/Compile the script reporting any syntax errors
 */
 if (eParseScript(script) < 0) {
 fprintf(stderr,"Error at line %d of script '%s'.\n",
 eGetLineNum(script), eGetSourceName(script));
 fprintf(stderr,"Error is '%s'\n\n", eGetErrorMsg(script));
 exit(1);
 }

 /*
 ** Execute it and report any runtime errors
 */
 if (eRunScript(script) < 0) {
 fprintf(stderr,"Runtime error at line %d of script '%s'.\n",
 eGetLineNum(script), eGetSourceName(script));
 fprintf(stderr,"Error is '%s'\n\n", eGetErrorMsg(script));
 exit(1);
 }

 /*
 ** Grab the value of the variable called "result" from the script
 */
 result = eGetVariableValue(script,"result");
 if (result)
 printf("\nResult = '%s'\n\n",result);
}

Page 35

Ember vs Lite
Lite was the initial implementation of the language and functionality outlined in this manual. It was developed
as the scripting language that was distributed with the Mini SQL database system. Lite and it’s HTML
embedded counterpart called w3-mSQL have been replaced by Ember and w3e. When compared to Lite, Ember
code executes several times faster and uses less memory. The internals of the virtual machine are also much
cleaner and less prone to errors. Ember can also be embedded in other applications – a feature that was missing
from Lite.

To port your existing Lite or W3-mSQL application over to Ember there are a few things that must be
considered. Firstly, Ember is much more strict about accessing variables that do not exist. Lite allowed you to
access nonexistent variables and it simply returned an empty string as their value. Ember however views this as
an error and reports it as such. This is an important design change and one that can greatly increase the
reliability of your Ember application.

If you require to check for the existence of a variable, Ember provides the exists() function in the standard
module. This function returns a positive value of the variable exists and a zero value if it doesn’t. See the
module documentation for further information.

Ember allows some C styled “short cuts” that Lite didn’t understand. All the fragments below are legal in
Ember but would have generated errors in Lite

• if ($foo)
• $foo++
• $foo—

As Lite was distributed with mSQL, it included bindings for the mSQL API in the standard distribution. Ember
is being distributed as a stand-alone language and as such only includes basic string and system functionality in
the base distribution. Access to mSQL is still available but requires the use of the mSQL module. A dynamic
module for mSQL access is available from www.Hughes.com.au.

To remove confusion, the char type provided by Lite has been replaced by a text type in Ember. Ember will
compile and execute code that utilises the old char type but it will generate a warning message for each use of
char.

Ember allows an array element to contain an array, providing multi-dimensional arrays. Lite provided no such
feature. Similarly, Lite did not provide the Associative arrays available to the Ember programmer.

To simply the use of Ember in applications that make reference to currency, a money type has been added. This
new type is simply a fixed precision real value offering two decimal places of precision (e.g. 1.23). Although
designed for use with currency values it is also a useful type for many numeric quantities.

W3-mSQL provided a simple and error prone authentication system called W3-Auth. Support for W3-Auth is
not available from Ember. Web based Ember applications can manage their own authentication needs using the
HTTP Authentication routines provided in the WWW related module.

